home *** CD-ROM | disk | FTP | other *** search
- subroutine dgedi(a,lda,n,ipvt,det,work,job)
- integer lda,n,ipvt(1),job
- double precision a(lda,1),det(2),work(1)
- c
- c dgedi computes the determinant and inverse of a matrix
- c using the factors computed by dgeco or dgefa.
- c
- c on entry
- c
- c a double precision(lda, n)
- c the output from dgeco or dgefa.
- c
- c lda integer
- c the leading dimension of the array a .
- c
- c n integer
- c the order of the matrix a .
- c
- c ipvt integer(n)
- c the pivot vector from dgeco or dgefa.
- c
- c work double precision(n)
- c work vector. contents destroyed.
- c
- c job integer
- c = 11 both determinant and inverse.
- c = 01 inverse only.
- c = 10 determinant only.
- c
- c on return
- c
- c a inverse of original matrix if requested.
- c otherwise unchanged.
- c
- c det double precision(2)
- c determinant of original matrix if requested.
- c otherwise not referenced.
- c determinant = det(1) * 10.0**det(2)
- c with 1.0 .le. dabs(det(1)) .lt. 10.0
- c or det(1) .eq. 0.0 .
- c
- c error condition
- c
- c a division by zero will occur if the input factor contains
- c a zero on the diagonal and the inverse is requested.
- c it will not occur if the subroutines are called correctly
- c and if dgeco has set rcond .gt. 0.0 or dgefa has set
- c info .eq. 0 .
- c
- c linpack. this version dated 08/14/78 .
- c cleve moler, university of new mexico, argonne national lab.
- c
- c subroutines and functions
- c
- c blas daxpy,dscal,dswap
- c fortran dabs,mod
- c
- c internal variables
- c
- double precision t
- double precision ten
- integer i,j,k,kb,kp1,l,nm1
- c
- c
- c compute determinant
- c
- if (job/10 .eq. 0) go to 70
- det(1) = 1.0d0
- det(2) = 0.0d0
- ten = 10.0d0
- do 50 i = 1, n
- if (ipvt(i) .ne. i) det(1) = -det(1)
- det(1) = a(i,i)*det(1)
- c ...exit
- if (det(1) .eq. 0.0d0) go to 60
- 10 if (dabs(det(1)) .ge. 1.0d0) go to 20
- det(1) = ten*det(1)
- det(2) = det(2) - 1.0d0
- go to 10
- 20 continue
- 30 if (dabs(det(1)) .lt. ten) go to 40
- det(1) = det(1)/ten
- det(2) = det(2) + 1.0d0
- go to 30
- 40 continue
- 50 continue
- 60 continue
- 70 continue
- c
- c compute inverse(u)
- c
- if (mod(job,10) .eq. 0) go to 150
- do 100 k = 1, n
- a(k,k) = 1.0d0/a(k,k)
- t = -a(k,k)
- call dscal(k-1,t,a(1,k),1)
- kp1 = k + 1
- if (n .lt. kp1) go to 90
- do 80 j = kp1, n
- t = a(k,j)
- a(k,j) = 0.0d0
- call daxpy(k,t,a(1,k),1,a(1,j),1)
- 80 continue
- 90 continue
- 100 continue
- c
- c form inverse(u)*inverse(l)
- c
- nm1 = n - 1
- if (nm1 .lt. 1) go to 140
- do 130 kb = 1, nm1
- k = n - kb
- kp1 = k + 1
- do 110 i = kp1, n
- work(i) = a(i,k)
- a(i,k) = 0.0d0
- 110 continue
- do 120 j = kp1, n
- t = work(j)
- call daxpy(n,t,a(1,j),1,a(1,k),1)
- 120 continue
- l = ipvt(k)
- if (l .ne. k) call dswap(n,a(1,k),1,a(1,l),1)
- 130 continue
- 140 continue
- 150 continue
- return
- end
-